Creating an automaton by adding states and transitions
Table of Contents
This example demonstrates how to create an automaton and then print it.
Transition-based Generalized Büchi automaton
For historical reasons, TGBAs are the more commonly used type of automata in Spot.
C++
#include <iostream> #include <spot/twaalgos/hoa.hh> #include <spot/twa/twagraph.hh> int main(void) { // The bdd_dict is used to maintain the correspondence between the // atomic propositions and the BDD variables that label the edges of // the automaton. spot::bdd_dict_ptr dict = spot::make_bdd_dict(); // This creates an empty automaton that we have yet to fill. spot::twa_graph_ptr aut = make_twa_graph(dict); // Since a BDD is associated to every atomic proposition, the // register_ap() function returns a BDD variable number // that can be converted into a BDD using bdd_ithvar(). bdd p1 = bdd_ithvar(aut->register_ap("p1")); bdd p2 = bdd_ithvar(aut->register_ap("p2")); // Set the acceptance condition of the automaton to Inf(0)&Inf(1) aut->set_generalized_buchi(2); // States are numbered from 0. aut->new_states(3); // The default initial state is 0, but it is always better to // specify it explicitly. aut->set_init_state(0U); // new_edge() takes 3 mandatory parameters: source state, // destination state, and label. A last optional parameter can be // used to specify membership to acceptance sets. aut->new_edge(0, 1, p1); aut->new_edge(1, 1, p1 & p2, {0}); aut->new_edge(1, 2, p2, {1}); aut->new_edge(2, 1, p1 | p2, {0, 1}); // Print the resulting automaton. print_hoa(std::cout, aut); return 0; }
HOA: v1 States: 3 Start: 0 AP: 2 "p1" "p2" acc-name: generalized-Buchi 2 Acceptance: 2 Inf(0)&Inf(1) properties: trans-labels explicit-labels trans-acc --BODY-- State: 0 [0] 1 State: 1 [0&1] 1 {0} [1] 2 {1} State: 2 [0 | 1] 1 {0 1} --END--
Python
import spot import buddy # The bdd_dict is used to maintain the correspondence between the # atomic propositions and the BDD variables that label the edges of # the automaton. bdict = spot.make_bdd_dict(); # This creates an empty automaton that we have yet to fill. aut = spot.make_twa_graph(bdict) # Since a BDD is associated to every atomic proposition, the register_ap() # function returns a BDD variable number that can be converted into a BDD # using bdd_ithvar() from the BuDDy library. p1 = buddy.bdd_ithvar(aut.register_ap("p1")) p2 = buddy.bdd_ithvar(aut.register_ap("p2")) # Set the acceptance condition of the automaton to Inf(0)&Inf(1) aut.set_generalized_buchi(2) # States are numbered from 0. aut.new_states(3) # The default initial state is 0, but it is always better to # specify it explicitly. aut.set_init_state(0) # new_edge() takes 3 mandatory parameters: source state, destination state, # and label. A last optional parameter can be used to specify membership to # acceptance sets. In the Python version, the list of acceptance sets the # transition belongs to should be specified as a list. aut.new_edge(0, 1, p1) aut.new_edge(1, 1, p1 & p2, [0]) aut.new_edge(1, 2, p2, [1]); aut.new_edge(2, 1, p1 | p2, [0, 1]); # Print the resulting automaton. print(aut.to_str('hoa'))
HOA: v1 States: 3 Start: 0 AP: 2 "p1" "p2" acc-name: generalized-Buchi 2 Acceptance: 2 Inf(0)&Inf(1) properties: trans-labels explicit-labels trans-acc --BODY-- State: 0 [0] 1 State: 1 [0&1] 1 {0} [1] 2 {1} State: 2 [0 | 1] 1 {0 1} --END--
Büchi automaton, with state-based acceptance
Spot does not really support state-based acceptance condition; this is faked as follows:
- instead of marking states as accepting, we mark all outgoing edges of accepting states,
- additionally, we set
prop_state_acc(true)
to indicate that the automaton should output as if it were state-based.
Some algorithms recognize the prop_state_acc()
properties and trigger
some special handling of the automaton, maybe to preserve its "fake
state-based nature".
The print_hoa()
function will check that automata marked with
prop_state_acc()
are actually using the same acceptance sets on all
outgoing transitions of each state, and raise an exception otherwise.
In the following example, we are going to use Büchi acceptance, but
prop_state_acc()
can be used with any acceptance. Again, this property
should be read as "this automaton with transition-based acceptance
is actually encoding a state-based acceptance, so treat it as follows
whenever possible".
C++
#include <iostream> #include <spot/twaalgos/hoa.hh> #include <spot/twa/twagraph.hh> int main(void) { // The bdd_dict is used to maintain the correspondence between the // atomic propositions and the BDD variables that label the edges of // the automaton. spot::bdd_dict_ptr dict = spot::make_bdd_dict(); // This creates an empty automaton that we have yet to fill. spot::twa_graph_ptr aut = make_twa_graph(dict); // Since a BDD is associated to every atomic proposition, the // register_ap() function returns a BDD variable number // that can be converted into a BDD using bdd_ithvar(). bdd p1 = bdd_ithvar(aut->register_ap("p1")); bdd p2 = bdd_ithvar(aut->register_ap("p2")); // Set the acceptance condition of the automaton to Inf(0) aut->set_buchi(); // Pretend this is state-based acceptance aut->prop_state_acc(true); // States are numbered from 0. aut->new_states(3); // The default initial state is 0, but it is always better to // specify it explicitly. aut->set_init_state(0U); // new_edge() takes 3 mandatory parameters: source state, // destination state, and label. A last optional parameter can be // used to specify membership to acceptance sets. aut->new_edge(0, 1, p1); // All edges leaving the same state must belong to the same // acceptance sets. aut->new_edge(1, 1, p1 & p2, {0}); aut->new_edge(1, 2, p2, {0}); aut->new_edge(2, 1, p1 | p2); // Print the resulting automaton. print_hoa(std::cout, aut); return 0; }
HOA: v1 States: 3 Start: 0 AP: 2 "p1" "p2" acc-name: Buchi Acceptance: 1 Inf(0) properties: trans-labels explicit-labels state-acc --BODY-- State: 0 [0] 1 State: 1 {0} [0&1] 1 [1] 2 State: 2 [0 | 1] 1 --END--
Python
import spot import buddy # The bdd_dict is used to maintain the correspondence between the # atomic propositions and the BDD variables that label the edges of # the automaton. bdict = spot.make_bdd_dict(); # This creates an empty automaton that we have yet to fill. aut = spot.make_twa_graph(bdict) # Since a BDD is associated to every atomic proposition, the register_ap() # function returns a BDD variable number that can be converted into a BDD # using bdd_ithvar() from the BuDDy library. p1 = buddy.bdd_ithvar(aut.register_ap("p1")) p2 = buddy.bdd_ithvar(aut.register_ap("p2")) # Set the acceptance condition of the automaton to Inf(0) aut.set_buchi() # Pretend this is state-based acceptance aut.prop_state_acc(True); # States are numbered from 0. aut.new_states(3) # The default initial state is 0, but it is always better to # specify it explicitly. aut.set_init_state(0) # new_edge() takes 3 mandatory parameters: source state, destination state, # and label. A last optional parameter can be used to specify membership to # acceptance sets. In the Python version, the list of acceptance sets the # transition belongs to should be specified as a list. aut.new_edge(0, 1, p1) # All edges leaving the same state must belong to the same acceptance sets. aut.new_edge(1, 1, p1 & p2, [0]) aut.new_edge(1, 2, p2, [0]); aut.new_edge(2, 1, p1 | p2); # Print the resulting automaton. print(aut.to_str('hoa'))
HOA: v1 States: 3 Start: 0 AP: 2 "p1" "p2" acc-name: Buchi Acceptance: 1 Inf(0) properties: trans-labels explicit-labels state-acc --BODY-- State: 0 [0] 1 State: 1 {0} [0&1] 1 [1] 2 State: 2 [0 | 1] 1 --END--
Automaton with arbitrary acceptance condition
Generalized Büchi, and Büchi are common enough to warrant a dedicated
method for setting the acceptance condition in the twa_graph
class.
Arbitrary acceptance condition can be set with set_acceptance
.
C++
#include <iostream> #include <spot/twaalgos/hoa.hh> #include <spot/twa/twagraph.hh> int main(void) { spot::bdd_dict_ptr dict = spot::make_bdd_dict(); spot::twa_graph_ptr aut = make_twa_graph(dict); bdd p1 = bdd_ithvar(aut->register_ap("p1")); bdd p2 = bdd_ithvar(aut->register_ap("p2")); // The acceptance condition can be parsed from a string, // or built from parts using spot::acc_cond. aut->set_acceptance(3, "(Inf(0) & Fin(1)) | Fin(2)"); aut->new_states(3); aut->set_init_state(0U); aut->new_edge(0, 1, p1); aut->new_edge(1, 1, p1 & p2, {0}); aut->new_edge(1, 2, p2, {1}); aut->new_edge(2, 1, p1 | p2, {0, 2}); print_hoa(std::cout, aut); return 0; }
HOA: v1 States: 3 Start: 0 AP: 2 "p1" "p2" Acceptance: 3 (Inf(0) & Fin(1)) | Fin(2) properties: trans-labels explicit-labels trans-acc --BODY-- State: 0 [0] 1 State: 1 [0&1] 1 {0} [1] 2 {1} State: 2 [0 | 1] 1 {0 2} --END--
Python
import spot import buddy bdict = spot.make_bdd_dict(); aut = spot.make_twa_graph(bdict) p1 = buddy.bdd_ithvar(aut.register_ap("p1")) p2 = buddy.bdd_ithvar(aut.register_ap("p2")) # The acceptance condition can be parsed from a string, # or built from parts using spot.acc_cond. aut.set_acceptance(3, "(Inf(0) & Fin(1)) | Fin(2)"); aut.new_states(3) aut.set_init_state(0) aut.new_edge(0, 1, p1) aut.new_edge(1, 1, p1 & p2, [0]) aut.new_edge(1, 2, p2, [1]); aut.new_edge(2, 1, p1 | p2, [0, 2]); print(aut.to_str('hoa'))
HOA: v1 States: 3 Start: 0 AP: 2 "p1" "p2" Acceptance: 3 (Inf(0) & Fin(1)) | Fin(2) properties: trans-labels explicit-labels trans-acc --BODY-- State: 0 [0] 1 State: 1 [0&1] 1 {0} [1] 2 {1} State: 2 [0 | 1] 1 {0 2} --END--