import spot
spot.setup()
from spot.jupyter import display_inline
This notebook presents functions that can be used to solve the Reactive Synthesis problem using games.
If you are not familiar with how Spot represents games, please read the games
notebook first.
In Reactive Synthesis, the goal is to build an electronic circuit that reacts to some input signals by producing some output signals, under some LTL constraints that tie both input and output. Of course the input signals are not controllable, so only job is to decide what output signal to produce.
A strategy/control circuit can be derived more conveniently from an LTL/PSL specification. The process is decomposed in three steps:
Each of these steps is parameterized by a structure called synthesis_info
. This structure stores some additional data needed to pass fine-tuning options or to store statistics.
The ltl_to_game
function takes the LTL specification, and the list of controllable atomic propositions (or output signals). It returns a two-player game, where player 0 plays the input variables (and wants to invalidate the acceptance condition), and player 1 plays the output variables (and wants to satisfy the output condition). The conversion from LTL to parity automata can use one of many algorithms, and can be specified in the synthesis_info
structure (this works like the --algo=
option of ltlsynt
).
si = spot.synthesis_info()
si.s = spot.synthesis_info.algo_LAR # Use LAR algorithm
game = spot.ltl_to_game("G((F(i0) && F(i1))->(G(i1<->(X(o0)))))", ["o0"], si)
print("game has", game.num_states(), "states and", game.num_edges(), "edges")
print("output propositions are:", ", ".join(spot.get_synthesis_output_aps(game)))
display(game)
Solving the game, is done with solve_game()
as with any game. There is also a version that takes a synthesis_info
as second argument in case the time it takes has to be recorded. Here passing si
or not makes no difference.
print("Found a solution:", spot.solve_game(game, si))
spot.highlight_strategy(game)
game.show('.g')
Once a strategy has been found, it can be extracted as an automaton and simplified using 6 different levels (the default is 2). The output should be interpreted as a Mealy automaton, where transition have the form (ins)&(outs)
where ins
and outs
are Boolean formulas representing possible inputs and outputs (they could be more than just conjunctions of atomic proposition). Mealy machines with this type of labels are called "separated" in Spot.
# We have different levels of simplification:
# 0 : No simplification
# 1 : bisimulation-based reduction
# 2 : bisimulation-based reduction with output assignement
# 3 : SAT-based exact minimization
# 4 : First 1 then 3 (exact)
# 5 : First 2 then 3 (not exact)
descr = ["0 : No simplification",
"1 : bisimulation-based reduction",
"2 : bisimulation-based reduction with output assignement",
"3 : SAT-based exact minimization",
"4 : First 1 then 3 (exact)",
"5 : First 2 then 3 (not exact)"]
for i in range(6):
print("simplification lvl ", descr[i])
si.minimize_lvl = i
mealy = spot.solved_game_to_mealy(game, si)
spot.simplify_mealy_here(mealy, si.minimize_lvl, False)
display(mealy)
If needed, a separated Mealy machine can be turned into game shape using split_separated_mealy()
, which is more efficient than split_2step()
.
display_inline(mealy, spot.split_separated_mealy(mealy), per_row=2)
A separated Mealy machine can be converted to a circuit in the AIGER format using mealy_machine_to_aig()
. This takes a second argument specifying what type of encoding to use (exactly like ltlsynt
's --aiger=...
option).
In this case, the circuit is quite simple: o0
should be the negation of previous value of i1
. This is done by storing the value of i1
in a latch. And the value if i0
can be ignored.
aig = spot.mealy_machine_to_aig(mealy, "isop")
display(aig)
While we are at it, let us mention that you can render those circuits horizontally as follows:
aig.show('h')
To encode the circuit in the AIGER format (ASCII version) use:
print(aig.to_str())
It can happen that propositions declared as output are omitted in the aig circuit (either because they are not part of the specification, or because they do not appear in the winning strategy). In that case those values can take arbitrary values.
For instance so following constraint mention o1
and i1
, but those atomic proposition are actually unconstrained (F(... U x)
can be simplified to Fx
). Without any indication, the circuit built will ignore those variables:
game = spot.ltl_to_game("i0 <-> F((Go1 -> Fi1) U o0)", ["o0", "o1"])
spot.solve_game(game)
spot.highlight_strategy(game)
display(game)
mealy = spot.solved_game_to_mealy(game)
display(mealy)
spot.simplify_mealy_here(mealy, 2, True)
display_inline(mealy, spot.unsplit_mealy(mealy))
aig = spot.mealy_machine_to_aig(mealy, "isop")
display(aig)
To force the presence of extra variables in the circuit, they can be passed to mealy_machine_to_aig()
.
display(spot.mealy_machine_to_aig(mealy, "isop", ["i0", "i1"], ["o0", "o1"]))
It can happen that the complete specification of the controller can be separated into sub-specifications with DISJOINT output propositions, see Finkbeiner et al. Specification Decomposition for Reactive Synthesis. This results in multiple Mealy machines which have to be converted into one single AIG circuit.
This can be done in two ways:
mealy_machines_to_aig()
, which takes a vector of separated Mealy machines as argument.Note that the method version is usually preferable as it is faster.
Also note that in order for this to work, all mealy machines need to share the same bdd_dict
. This can be ensured by passing a common options structure.
g1 = spot.ltl_to_game("G((i0 xor i1) <-> o0)", ["o0"], si)
g2 = spot.ltl_to_game("G((i0 xor i1) <-> (!o1))", ["o1"], si)
spot.solve_game(g1)
spot.highlight_strategy(g1)
spot.solve_game(g2)
spot.highlight_strategy(g2)
print("Solved games:")
display_inline(g1, g2)
strat1 = spot.solved_game_to_separated_mealy(g1)
strat2 = spot.solved_game_to_separated_mealy(g2)
print("Reduced strategies:")
display_inline(strat1, strat2)
#Method 1
print("Circuit implementing both machines from a vector of machines:")
aig = spot.mealy_machines_to_aig([strat1, strat2], "isop")
display(aig)
#Method 2
strat_comb = spot.mealy_product(strat1, strat2)
print("Combining the two machines into one.")
display(strat_comb)
aig_comb = spot.mealy_machine_to_aig(strat_comb, "isop")
display(aig_comb)
Note that we do not support the full AIGER syntax. Our restrictions corresponds to the conventions used in the type of AIGER file we output:
aag_txt = """aag 5 2 0 2 3
2
4
10
6
6 2 4
8 3 5
10 7 9
i0 a
i1 b
o0 c
o1 d"""
this_aig = spot.aiger_circuit(aag_txt)
display(this_aig)
print(this_aig.to_str())
print(this_aig.gates())
An AIG circuit can be transformed into a monitor/Mealy machine. This can be used for instance to check that it does not intersect the negation of the specification.
this_aig.as_automaton()
Note that the generation of aiger circuits from Mealy machines is flexible and accepts separated Mealy machines as well as split Mealy machines.
strat1_s = spot.split_separated_mealy(strat1)
display_inline(strat1, strat1_s)
print(spot.get_synthesis_output_aps(strat1))
print(spot.get_synthesis_output_aps(strat1_s))
display_inline(spot.mealy_machine_to_aig(strat1, "isop"), spot.mealy_machine_to_aig(strat1_s, "isop"))